当前位置: 首页 >  事业单位 >  备考资料 >  职测 > 

事业单位《职测》数量关系备考技巧:公式法

2022-11-27  | 

【导读】事业单位《职测》数量关系备考技巧:公式法。更多招考信息,备考干货,辅导课程,时政资料,欢迎关注金标尺教育获取。

在之前的文章中小编给大家介绍了特殊值法在事业单位《职测》数量关系问题中的适用范围及示例汇总,今天小编给大家准备了公式法在事业单位《职测》数量关系问题中的适用范围及示例汇总,希望对备考的小伙伴们有所帮助。

一、定义及适用范围

在数学运算中很多题目需要运用数学公式计算,对于一些广泛出现的运算题型,这些题型的变化相对较少,且每一题型都有其核心的解题公式,遇到这些题时,只要理清题意,套用公式即可。

二、分类示例

【例1】环保部门对一定时间内的河流水质进行采样,原计划每41分钟采样1次,但在实际采样过程中,第一次和最后一次采样的时间与原计划相同,每两次采样的间隔变成20分钟,采样次数比原计划增加了1倍。问实际采样次数是多少次?

A.22

B.32

C.42

D.52

【解析】C。设原计划采样x次,有x-1个时间间隔,总用时为41×(x-1)分钟。实际采样过程中,第一次和最后一次采样时间与原计划相同说明总用时不变。采样次数变为2x,有2x-1个时间间隔,总用时为20×(2x-1)分钟。所以41×(x-1)=20×(2x-1),解得x=21,则实际采样次数为21*2=42次。

【例2】五年级学生分成两队参加广播操比赛,排成甲、乙两个实心方阵,其中甲方阵最外层每边的人数为8。如果两队合并,可以另排成一个空心的丙方阵,丙方阵最外层每边的人数比乙方阵最外层每边的人数多4人,且甲方阵的人数正好填满丙方阵的空心。五年级一共有多少人?

A.200

B.236

C.260

D.288

【解析】C。空心的丙方阵人数=甲方阵人数+乙方阵人数,若丙方阵为实心的,那么实心的丙方阵人数=2×甲方阵人数+乙方阵人数,即实心丙方阵比乙方阵多82×2=128人。丙方阵最外层每边比乙方阵多4人,则丙方阵最外层总人数比乙方阵多4×4=16人,即多了16÷8=2层。这两层的人数即为实心丙方阵比乙方阵多的128人,则丙方阵最外层人数为(128+8)÷2=68人,丙方阵最外层每边人数为(68+4)÷4=18人。那么,共有182-82=260人。

【例3】假设某地森林资源的增长速度是一定的,且不受到自然灾害等原因影响。那么若每年开采110万立方米,则可开采90年,若每年开采90万立方米则可开采210年。为了使这片森林可持续开发,则每年最多开采多少万立方米林木?(  )

A.30

B.50

C.60

D.75

【解析】D。牛吃草问题变形,森林每年再生(90×210-110×90)-(210-90)=75万立方米。如果每年开采的资源超过再生的数量,森林就慢慢减少,无法保证可持续开发。

【例4】某零件加工厂按照工人完成的合格零件和不合格零件支付工资,工人每做出一个合格零件能得到工资10元,每做一个不合格零件将被扣除5元,已知某人一天共做了12个零件,得工资90元,那么他在这一天做了多少个不合格零件?

A.2

B.3

C.4

D.6

【解析】A。得失问题,求“失”,应当采用“设得求失”的思路。做出一个合格零件得10元,做出一个不合格零件损失10+5=15元。若12个零件都合格,那么这个人可以得到12×10=120元,可现在只得了90元,说明做了(120-90)÷15=2个不合格的零件。此题答案为A。

以上就是本文的全部内容,祝大家考试顺利~

 

 

推荐阅读:

事业单位有哪些

事业编事业单位报考条件要求

事业单位考试科目有哪些

事业单位考试内容

事业编制和公务员的区别

事业单位人事管理条例

事业单位联考各省试卷一样吗

事业单位联考什么意思

事业单位ABCDE类的区别是什么

 

金标尺教育

点击查看 更多招考

金标尺

扫码关注 招聘考试公众号 ,随时随地了解考试动态